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MACROSCOPIC DESCRIPTION OF HEAVY-ION REACTIONS

J. Rayford Nix

Theoretical Division, Los Alamos Scientific Laboratory

University of California, Los Alamos, New Mexico 87545, U.S.A.

Abstract

We discuss the statics and dynamics of large scale nuclear collective motion, with spe-
cial emphasis on very-heavv-ion reactions. Compound-nucleus cross sections are calculated
by use of the criterion that the dynamical trajectory for the fusing systez must pass inside
the fission saddle point in a multidimensional space in order to form a compound nucleus.

In an effort to understand whether nuclear dissipation is dominated by two~body collisions
or by the interaction of particles with the mean field generated by the remaining particles,
we compare the predictions of various macroscopic approaches with those of time-~deperdent
mean-field (lHarcree-Fock) theories.

Introduction

Very-heavy-ion reactions are providing us the oppertunity tc study arge-scale nuclear
collective motion for svstems that are almost twice as heavy as any known nuclei and for
shapes that are far removed from a sphere. This is extending greatly our understanding oIl
nuclear shape changes acquired recently from studies of nuclear fission.

For the description of such large-scale nuclear collective motion, we may use either a
micrescopic approach or a macroscopic approach, VWithin the former approach, substantial
progress has been made recently in terms of the time-dependent mean-field (Hartree-Fock)
approximation (1,2]). I would like to discuss this approximation, which leads to scveral
predictions that are qualitatively different from those of mos:t macroscopic approaches, near
the end of my talk.

My main concern here will be with a macroscopic approach, which is based on the rela-
tively large number of dagrees of freedom in a heavy nuclear system. In this approach, cne
starts with a distribution of matter that is subjected to given forces and solves the re-
sulting classical equations of mction in some approximation. Althoush attempts have been
made recently to solve the equations of motion directlv by use of finite~difference tech-
niques [3], the more commen procedure is to assume that the matter Iis incompressible and =
specify the nuclear shape by means of a small number of collective coordinates. This lead
to a system of coupled nonlinear differential equations, whose solution for a given set of
initial conditions specifies the time evoluticn of the nuclear shape {i-7]. This tine eve-
lution depends upon three fundamental nuclear properties: (1) the nuclear potentlal enerav
of deformation, (2) the collective kinetic enernmv, and (3) the dissipation mechanism for
converting collective energy into internal single-particle excitation energy. The internal
degrees ol freedom are treated implicitly, in contrast to the explicit treatment of the col-
lective degrees of freedom.

o]
s

Potential Energy

The nuclear potential enerpy of deformation consists of a nucle' ' macroscopic encrgy, a
Coulonb energy, a centrifugal enerpy, and a sinple~particle corresr on. For nuclei with
gero internal enerpy, the last term may be calculated by use o°  .utinsky's method (8,9].
This tern in general decreases with increasing internal energy.

An example of the nuclear macroscopic encrgy and Coulomb energy, as well as their sum,
ia ghowm in Fig, 1 for the collision of two spherical ®YKr nuclet [10). The energles are
plotted as functions of the distance r between the centars of mass of the two halves cof
the system, for a specificd one=dimensional sequence of shapes. These shapes are generated
by assuming that after the nuclel come into contact the density remains constant throughoeut
the shape, with the displaced matter simply f1lling in the neck region. This 1is valid only
when the relative velocities after contact are small compared to the nuclear speed of sound,
At higher incident ennrpies, the increcase in density 1n the neck region would lead to an
increase in potential energy as the nuclel come together.
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Fig. 1. Nuclear macroscogic energy, Coulomb energy, and their sum
for the reaction °%“Kr + "“Kr = !°°2f, The energies are plotted

as functions of the distance r betweer the centers of mass of the
two halves of the systems in units of the radius R° of the spher-
1cal compound nucleus '®°Hf.

The nuclear macroscopic energy shown in Fig., 1 was calculated by means of a double vol-
ume integral of a Yukawa effective two-nucleon interaction [10-13]., This procedure, which
suffers from the lack of any aspects of nuclear saturation, leads to nuclear potentials shat:
decrease more slowly with increasing distance than nuclear potentials derived from heavw-icn
elastic-scattering data [14,15].

This deficiency may be corrected either by use of the proximitv formalism of Swilatecki
and coworkers [16], or alternatively by use of an affective two-nucleon interacticen tha:
yields a minimum nuclear macroscoplc energy for zero separation between two semi-infinize
slabs of nuclear matter (17]. By starting with the difference between two Yukawa functivus
whose strengths are required to reproduce this saturation condition and the correct nuclear
surface energy, one finds that the ranges of both Yukawa functions must be approximatel:
equal in order to repre 'uce heavy-ion elastic-scaztering data, In the limit in vhich the
ranges are equal, this ..ew potential is obtained by multiplying the old single-Yukawa ‘oten-
tial by the Yukawa ranje a and differentiating with respect to a, which leads to a
Yukawa-plus-exponential effective two=-nucleon interaction [17].

For two separated spherical nucici, the resulting nuclear potential may be written as

- 8y _~-s/a
where Vn v“d (2+°) ©

s"r -~ (R1+R2)

is the separation between the inner surfaces of the two nuclel of equivalent-sharp radidy R1
and Ry, and where a is the range of the Yukawa and exponential functions. The potential

reduction factor V..,i 1s in general a function of both the nuclear system and the separa-

tion 8 {17]. However, when Rj/a >> 1 and Rzla >> 1, 1t simplifies to

e 2
V“d ~ acsnlkzz [ro (R1 + Rz)] ,



vhere r, 1s the nuclear-radius constant, whose value is taken from an analysis of electron-
scattering data and muonic-atom data (18], and where

£|51/2

2
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with a the surface-energy constant and Kg the surface-asymmetry constant.

Although at the above level of approxiration the Yukawa-plus—-expornential potential gives
the same result as the proximicy formalism [16], when treated exactly it contains geometri-
¢cal corrections that are somewhat different. For this exact treatment, we compare in Fig, 2
the predictions of the Yukawa=-plus-exponential potential with values of the nuclear poten-
tial determined experimentally from heavy-ion elastic-scattering data and heavy-ion fusion
data [17]). Although sume discrepancies are evident, this approach describes the main fea-
tures of the nuclear potential as determined by these reactions.
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Fig. 2. Comparison of the Yukawa-plus-exponential nuclear poten-
tial (solid curve) with values derived from heavv-ion elastic-
scattering data (solid points) and heavy-ion fusion data (open
points).

In addition to hecavy-ion reactions, the Yukawa-plus-exponential potential can be used
for fission and nuclear ground=state mosses and deformations. As shown in Fig. 3, this ap-
proach reproduces the fission barriers of rare-earth nuclel throuph actinide nuclei to with-
in an accuracy of 1 or 2 MeV [17], when single-particle effects are calculated by use of a
folded-Yukawa single-particle potential [19,20]. This approach also repreduces the gpround-
state masses of 165 even nuclei in the actinide region and four regions ot spherical nuclei
with a root-mean~square deviation of 1.2 MeV [17].

In both fission and very=~heavv-ion reactions, the end portions of :he system in general
are of unequal size and do not remain spherical., Therefore, 1n addition to the coordinate
r that specifies the distance between the left-hand and right-hand portions of the svstem,
we need a mass-asymmetry coordinate o and a fragment-elongation coordinate ¢, The former
is defined as the ditffercnce in mass between the two portions, d.vided by the total mass,
and the latter is defined as the sum of the root-mean-squar: extensions alonp the symmetrey
axis of the mass of wvach portion about its center of mass [12,13]. Of course, for a shape
without a well-defined ncck, some prescription must be adopted for dividing the system into
two portions [13].

We show in Fig, 4 some of the nuclear shapes zorresponding to various values of r and
O, when the mass asymmetry a = 0 [12]. The lower left~hand part of the fipure corresponds
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Fige 4. Nuclear shapes corresponding to various values of r
and 0 , which are indicated by plus signs.

to a single comporite system, and the lower right-hand part corresponds to two separated nu-
clei, Extending diagonally toward the upper right-hand corner are three-fragment and four=
fragment configurations, which are separated from each other by elongated cylinder~like
shapes.

Figure 5 shows as a function of these twoe coordinates the macroscopic potential energy
for head-on collisions in the reaction ''%pd + 11%pg = 220y, calculated with the single-
Yukawa potential [12]). The binary fission saddle point, whose location is indicated by two
short croused lines, lies 6,3 MeV hiphe * in cnergy than the spherical *2°U nucleus, whese
locatior is indicated by a sinple solid dot. The point of first contact in heavveion reac-
tions, whose location is indicated by two adjacent solid dots, lies some 24 MeV higher in
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Fig. 5. Macroscopic potential-energy contours for the 220y

nuclear system, in units of MeV,

energy than the binary saddle point. In this two-dimensional space, the path between the
contact point and the sphere is on the side of a steep hill, with the potential energy de-
creasing rapidly toward increasing fragment elongation C.

For nuclear systems lighter than about 220y  the macroscopic zero—angular-nomentum bina=-
ry saddle point lies outside the contact point, which permits compound-nucleus formation to
occur whenever the ions are brought into contact at moderate energies. However, for nuclear
systems heavier than about 2‘°U, the macroscopic zero-angular-momentum binary saddle point
lies inside the contact point, wich its location moving toward the sphere as the size cof the
system increases [12].

Nuclear Dynanics

A necessary condition for forming a compound nucleus 1s that the dynamical trajectorv
for the fusiag svstem pass inside the fission saddle point in a multidimensional space [6].
In addition to the potential energy, the dvnamical trajectory depends upon the collective
kinetic energy and the mechanism of nuclear dissipation,

We calculate the collective kinetic energy for nuclear flow that is a superposition of
incompressible, nearly irrotational collective-shape motion and rigid-bodyv rotation [4=7].
As an approximation to irrotational flow we use the Werner-Wheeler method, which determines
the flow in terms of circular layers of fluid [4,3). Angular momentum is taken into account
approximately by means of a pseudopotential that is calculated for the rigid-body rotation
of nuclear shapes that are required to remain axially symmetric about an axis that is rotat-
ing in space [6]. The nuclear shapes are described in terms of smoothly joined portions of
three quadratic surfaces of revolution [4].

Nuclear dissipation is included by means of the Rayleigh dissipation function [5,7,9],
vhich depends upon the nuclear shape and time rate of change of the shape, as well as upon
the particular mechanism that is used for converting collective energy into internal energy.
At present w2 know very little about this mechanism, but are exploring possibilities that
range from ordinary two-body viscosity, which arises from the collision of nucleons with
each other [5], to one-body dissipation, which arises from the collision of nucleons with
the moving nucle:r surface {7,21],

The resulting generalized Lagrange equations of motion are transformed into the general-
fzed Hamilton equations of motion and integrated numerically to determine the dynamical tra-
jectory, for a given set of initial conditions., For the case in which the nuclear dissipa-
tion is zero, we show in Fig. 6 some uxamples of these trajectories for the reaction
104 4 M%g 4 2% at a bombarding enarpy in the center-of-mass system that is 20 MeV
above the maximum in the one~dimensional zero-angular-momentum interaction barrifer [6]. At
this bombarding cnergy, only those trajectories with angular momentum £ less than the
critical value ’cri = 45 pass inside the fission saddle point for that angular momentum
(indicated by the points) and lead to compound-nucleus formation,
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The resulting compound-nucleus cross section for this system is shown by the solid curve
in Fig, 7 [6]. 1In the energy region below the arrow in the solid curve, the compound-
nucleus cross section is determined by the requirement that the dynamical trajectory pass
inside the fission saddle point. This requirement reduces substantially the compound-
nucleus cross section compared to that calculated for a one-dimensional interaction barrier,
which is shown by the dashed curve, 1In the energy region above the arrow in the solid
curve, the compound-nucleus cross sectinn is determined by the angular momentum at which the

fission saddle point disappears.
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Fig. 7. Compnrlson of various cross sections for the
reaction '1%rd + !!%g » 22%, The results are plotted
as functions of the center-of-mass bombarding encrgy
relative to the maximum {a the one~dimensionul zero-
sngular-momentum interaction barrier,

-6=



Time
(Units of 10722 s)
-1.4

0.0

20

50

90

Fig, 8, Time evolution of the nuclear shape for the reactie:
Segr + 20981, calculated for a two-body viscosity coefiicient
U e 0,015 TP =9 x 107%" MeV s/fm? . The laboratoryv berbarce-
ing energy is 600 MeV, and the angular momentum is 200 h,

As shown by the dot-dashed curve, the total reaction cross section, which is determired
by the point at which the tails of the two nuclear densities begin to overlap rather than by
the subsequent dynamical motion, is roughly 10 times the compound~nucleus cross section. As
the size of the nuclear svstem increases, the fission saddle point moves toward the sphere,
whichk decreases the compound=-nucleus cross section.

For the case in which the nuclear dissipation proceceds by ordinary two=body viscosity,
we show in Fip. 8 a calculation of a highly inelastic collision [22]. After the 84kr and
29981 nuclei come into contact, the system develops an appreciable neck, which is followed
by a substantial elonpation of the two portions of the system. The initial bombardine ener-
gy 1s therefore converted partly into collective potential and kinetic energy, and partly
into internal single-particle excitation energy.

For a given angular momentum, such calculations predict the most probable final kinetic
energies, angles, and masses of the frapments emerping {rom a heavy-ion ceollision. In addi-
tion to tac most probable values, the widths of the distributions in these quantitics are
also important, These widths arise partly from quantal fluctuations that give rise to dis-
tribtutions in the values of the initial collective coordinates and their conjugate momenta
[4,23)] and partly from neglecting the effect of the internal coordinates on the dynamical
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path. Through the introduction of an effective diffusion constant, this latter effect 1is
often assumed to be responsible for the entire widths of the distributions in the final
quantities of interest [24-26].

Comparison with Mean-Field Theories

I would like now to turn to a microscopic approach for the description of large--scale
nuclear collective motion. The ultirmate microscopic approach--nirvana--would consist of a
quantal relativistic time-dependent many-bodv theorvy with all hadronic degrees of freedcz
included. Of course, in order to reduce such an ultimate theory *to something that is trac-
table, we must make several approximations [27].

First, we must specify which degrees of freedom are to be treated explicitly (for exam-
ple, only the nucleons) and which implicitly. Second, we must give up relativity, which
leads to a time-dependent many-body Schridinger equation. Third, we must approximate the
time-dependent rany-body wave function in some wav. Although we could attempt to taxke iz%o
account correlations between the particles by use of a correlated wave function, in prac-
tice it is necessary to introduce an effective interaccion, at which stage an approximate
generator—-coordinate wave function could be used, If, finally, there are many degrees oI
freedom and no explicit correlations, we are led to an independent-particle wave functicn,
such as a time-dependent Hartree-Fock wave function.

Such mean-field theories hava been used recently to calculate what happens in both

heavy~-ion reactions {1l] and in fission [2], with some predicticns that are qualitatively
different from those of most macroscopic approaches. As an example, we show in Fig, 9 the

40 + 40Ca £/4 =2 Mav

#=0.00 210" sec t=0.64

Fig. 9. Time evolution ol the nuclear density for the head-on collision of
“%a + °Cu, calculated with the time-dependent Hartree-Fock approximation.

The center~of-miss bombarding cnerpy per compound nucleon is 2 MeV, which

corresponds to a laboratory bombarding energy per projectile nucleon of 8 MeV,

-8-



results calculated in the time-dependent Hartree-Fock approximation for the head-on colli-
sion of two “°Ca nuclei at a laboratory bombarding energy of 320 MeV [1], Because in this
approximation the particles interact only with the mean f{ield generated by the remaining
particles, the two nucleil pass through each other ratuer than forming a compound nucleus.
During this interpenetration, the composite system maintains a prolate shape. By way of
contrast, in most macroscopic approaches the svstem would proceed from an initially prolate
shape to an oblate shape, then underso damped oscillations about the spherical shape, and
finally form a compound nucleus. Some attempts have been made recently to extend the time-
dependent Hartree~Fock approximation by taking into account two-body collisions [28,29].

As a final example, we compare in Fig. 10 the results c: lculated with the time-dependent
Hartree-Fock approximation fer the fission of 22°U with those calculated with four different
macroscopic approaches [2]. The time-dependent Hartree-Fock calculations are performed for
shapes that are reflection-symmetric and axially svrmetric, for a constant pairing gap of
2 MeV that is designed to simulate the effects of deviations from svmmetric shapes, and for
zero spin-orbit interaction. The four macroscopic calculations are performed for zero dis-~
sipation, for ordinary two-body viscosity, and for two versions of one-body dissipation.

The results of the time-dependent Hartree-Fock calculation are qualitatively similar to
those of the first three macroscopic approaches., Unfortunatelv, it is not possible from
this comparison to distinguish between such drastically different mechanisms for nuclear
dissipation as two-body viscosity and one version of one-body dissipation.

MICROSCOPIC MACROSCOPIC CALCULATION
TOHF NONVISCOUS VISCOSITY ODISSIPATION DISSIPATION
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Fig. 10. Time evolution of the nuclear shape for the fission of 2?®U, calculated
with the time-dependent Hartree-Fock approximation and with four different macro-
scopic approaches. 1In each case the initial conditions correspond to starting
from rest at a point beveond the fission saddle point ti.at is 1 MeV lcower in ener-
gy than the saddle~point energy.

Outlook

By means of very-heavy-ior reactions, we are now embarking on a study of the dynamics of
large-scale nuclear collective motion. As is true with any field in its infancy, many
important questions remain to be answered. Arc nuclei more nearlyv mobile like water, cr
more nearly viscous lie honev? Do nuclel dissipate their collective enerpy primarily
through collisions between individual particles, or through collisions of particles with the
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moving nuclear surface? Do the many approximations that are nocessary to reduce the viti-
mate microscopic theory to somethinr that is tractable invalidate the predictions of mecan-
field thcories? Are we able to obtain a satisfactory macroscopic description?

Some of these questions will be answered ultimately through comparisons with experimen-
tal data obcrained by continuing to bombard various targets with various projectiles at var-
dous ¢nergies. However, some of the more important ones could be answered much sooner bv
performing experizents that are carefully desisned to test the unique predictions of the
mean-field theories and various macroscopic approaches. 1 hope Lhat some of the experimen-
talists in the audience will rise to the challenge!
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